博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
深入理解ReentrantLock
阅读量:2119 次
发布时间:2019-04-30

本文共 20079 字,大约阅读时间需要 66 分钟。

在Java中通常实现锁有两种方式,一种是synchronized关键字,另一种是Lock。二者其实并没有什么必然联系,但是各有各的特点,在使用中可以进行取舍的使用。首先我们先对比下两者。

实现:

首先最大的不同:synchronized是基于JVM层面实现的,而Lock是基于JDK层面实现的。曾经反复的找过synchronized的实现,可惜最终无果。但Lock却是基于JDK实现的,我们可以通过阅读JDK的源码来理解Lock的实现。

使用:

对于使用者的直观体验上Lock是比较复杂的,需要lock和realse,如果忘记释放锁就会产生死锁的问题,所以,通常需要在finally中进行锁的释放。但是synchronized的使用十分简单,只需要对自己的方法或者关注的同步对象或类使用synchronized关键字即可。但是对于锁的粒度控制比较粗,同时对于实现一些锁的状态的转移比较困难。例如:

特点:

tips synchronized Lock
锁获取超时 不支持 支持
获取锁响应中断 不支持 支持

优化:

在JDK1.5之后synchronized引入了偏向锁,轻量级锁和重量级锁,从而大大的提高了synchronized的性能,同时对于synchronized的优化也在继续进行。期待有一天能更简单的使用java的锁。

在以前不了解Lock的时候,感觉Lock使用实在是太复杂,但是了解了它的实现之后就被深深吸引了。

Lock的实现主要有ReentrantLock、ReadLock和WriteLock,后两者接触的不多,所以简单分析一下ReentrantLock的实现和运行机制。

ReentrantLock类在java.util.concurrent.locks包中,它的上一级的包java.util.concurrent主要是常用的并发控制类.

Paste_Image.png

下面是ReentrantLock的UML图,从图中可以看出,ReentrantLock实现Lock接口,在ReentrantLock中引用了AbstractQueuedSynchronizer的子类,所有的同步操作都是依靠AbstractQueuedSynchronizer(队列同步器)实现。

Paste_Image.png

研究一个类,需要从一个类的静态域,静态类,静态方法和成员变量开始。

private static final long serialVersionUID = 7373984872572414699L;    /** Synchronizer providing all implementation mechanics */    private final Sync sync;    /**     * Base of synchronization control for this lock. Subclassed     * into fair and nonfair versions below. Uses AQS state to     * represent the number of holds on the lock.     */    abstract static class Sync extends AbstractQueuedSynchronizer {        private static final long serialVersionUID = -5179523762034025860L;        /**         * Performs {@link Lock#lock}. The main reason for subclassing         * is to allow fast path for nonfair version.         */        abstract void lock();        /**         * Performs non-fair tryLock.  tryAcquire is         * implemented in subclasses, but both need nonfair         * try for trylock method.         */        final boolean nonfairTryAcquire(int acquires) {            final Thread current = Thread.currentThread();            int c = getState();            if (c == 0) {                if (compareAndSetState(0, acquires)) {                    setExclusiveOwnerThread(current);                    return true;                }            }            else if (current == getExclusiveOwnerThread()) {                int nextc = c + acquires;                if (nextc < 0) // overflow                    throw new Error("Maximum lock count exceeded");                setState(nextc);                return true;            }            return false;        }        protected final boolean tryRelease(int releases) {            int c = getState() - releases;            if (Thread.currentThread() != getExclusiveOwnerThread())                throw new IllegalMonitorStateException();            boolean free = false;            if (c == 0) {                free = true;                setExclusiveOwnerThread(null);            }            setState(c);            return free;        }        protected final boolean isHeldExclusively() {            // While we must in general read state before owner,            // we don't need to do so to check if current thread is owner            return getExclusiveOwnerThread() == Thread.currentThread();        }        final ConditionObject newCondition() {            return new ConditionObject();        }        // Methods relayed from outer class        final Thread getOwner() {            return getState() == 0 ? null : getExclusiveOwnerThread();        }        final int getHoldCount() {            return isHeldExclusively() ? getState() : 0;        }        final boolean isLocked() {            return getState() != 0;        }        /**         * Reconstitutes this lock instance from a stream.         * @param s the stream         */        private void readObject(java.io.ObjectInputStream s)            throws java.io.IOException, ClassNotFoundException {            s.defaultReadObject();            setState(0); // reset to unlocked state        }    }

从上面的代码可以看出来首先ReentrantLock是可序列化的,其次是ReentrantLock里有一个对AbstractQueuedSynchronizer的引用。

看完了成员变量和静态域,我们需要了解下构造方法:

/**     * Creates an instance of {@code ReentrantLock}.     * This is equivalent to using {@code ReentrantLock(false)}.     */    public ReentrantLock() {        sync = new NonfairSync();    }    /**     * Creates an instance of {@code ReentrantLock} with the     * given fairness policy.     *     * @param fair {@code true} if this lock should use a fair ordering policy     */    public ReentrantLock(boolean fair) {        sync = fair ? new FairSync() : new NonfairSync();    }

从上面代码可以看出,ReentrantLock支持两种锁模式,公平锁和非公平锁。默认的实现是非公平的。公平和非公平锁的实现如下:

/**     * Sync object for non-fair locks     */    static final class NonfairSync extends Sync {        private static final long serialVersionUID = 7316153563782823691L;        /**         * Performs lock.  Try immediate barge, backing up to normal         * acquire on failure.         */        final void lock() {            if (compareAndSetState(0, 1))                setExclusiveOwnerThread(Thread.currentThread());            else                acquire(1);        }        protected final boolean tryAcquire(int acquires) {            return nonfairTryAcquire(acquires);        }    }    /**     * Sync object for fair locks     */    static final class FairSync extends Sync {        private static final long serialVersionUID = -3000897897090466540L;        final void lock() {            acquire(1);        }        /**         * Fair version of tryAcquire.  Don't grant access unless         * recursive call or no waiters or is first.         */        protected final boolean tryAcquire(int acquires) {            final Thread current = Thread.currentThread();            int c = getState();            if (c == 0) {                if (!hasQueuedPredecessors() &&                    compareAndSetState(0, acquires)) {                    setExclusiveOwnerThread(current);                    return true;                }            }            else if (current == getExclusiveOwnerThread()) {                int nextc = c + acquires;                if (nextc < 0)                    throw new Error("Maximum lock count exceeded");                setState(nextc);                return true;            }            return false;        }    }

AbstractQueuedSynchronizer 是一个抽象类,所以在使用这个同步器的时候,需要通过自己实现预期的逻辑,Sync、FairSync和NonfairSync都是ReentrantLock为了实现自己的需求而实现的内部类,之所以做成内部类,我认为是只在ReentrantLock使用上述几个类,在外部没有使用到。

我们着重关注默认的非公平锁的实现:
在ReentrantLock调用lock()的时候,调用的是下面的代码:

/**     * Acquires the lock.     *     * 

Acquires the lock if it is not held by another thread and returns * immediately, setting the lock hold count to one. * *

If the current thread already holds the lock then the hold * count is incremented by one and the method returns immediately. * *

If the lock is held by another thread then the * current thread becomes disabled for thread scheduling * purposes and lies dormant until the lock has been acquired, * at which time the lock hold count is set to one. */ public void lock() { sync.lock(); }

sync的实现是NonfairSync,所以调用的是NonfairSync的lock方法:

/**     * Sync object for non-fair locks     * tips:调用Lock的时候,尝试获取锁,这里采用的CAS去尝试获取锁,如果获取锁成功     *       那么,当前线程获取到锁,如果失败,调用acquire处理。     *      */    static final class NonfairSync extends Sync {        private static final long serialVersionUID = 7316153563782823691L;        /**         * Performs lock.  Try immediate barge, backing up to normal         * acquire on failure.         */        final void lock() {                        if (compareAndSetState(0, 1))                setExclusiveOwnerThread(Thread.currentThread());            else                acquire(1);        }        protected final boolean tryAcquire(int acquires) {            return nonfairTryAcquire(acquires);        }    }

接下来看看compareAndSetState方法是怎么进行锁的获取操作的:

/**     * Atomically sets synchronization state to the given updated     * value if the current state value equals the expected value.     * This operation has memory semantics of a volatile read     * and write.     *     * @param expect the expected value     * @param update the new value     * @return true if successful. False return indicates that the actual     *         value was not equal to the expected value.     *              * tips: 1.compareAndSetState的实现主要是通过Unsafe类实现的。     *       2.之所以命名为Unsafe,是因为这个类对于JVM来说是不安全的,我们平时也是使用不了这个类的。     *       3.Unsafe类内封装了一些可以直接操作指定内存位置的接口,是不是感觉和C有点像了?     *       4.Unsafe类封装了CAS操作,来达到乐观的锁的争抢的效果     */    protected final boolean compareAndSetState(int expect, int update) {        // See below for intrinsics setup to support this        return unsafe.compareAndSwapInt(this, stateOffset, expect, update);    }

主要的说明都在方法的注释中,接下来简单的看一下 compareAndSwapInt的实现:

/**     * Atomically update Java variable to x if it is currently     * holding expected.     * @return true if successful     */    public final native boolean compareAndSwapInt(Object o, long offset,                                                  int expected,                                                  int x);

一个native方法,沮丧.....但是从注释看意思是,以CAS的方式将制定字段设置为指定的值。同时我们也明白了这个方法可能是用java实现不了,只能依赖JVm底层的C代码实现。下面看看操作的stateOffset:

private static final Unsafe unsafe = Unsafe.getUnsafe();    private static final long stateOffset;    private static final long headOffset;    private static final long tailOffset;    private static final long waitStatusOffset;    private static final long nextOffset;    static {        try {            //这个方法很有意思,主要的意思是获取AbstractQueuedSynchronizer的state成员的偏移量            //通过这个偏移量来更新state成员,另外state是volatile的来保证可见性。            stateOffset = unsafe.objectFieldOffset                (AbstractQueuedSynchronizer.class.getDeclaredField("state"));            headOffset = unsafe.objectFieldOffset                (AbstractQueuedSynchronizer.class.getDeclaredField("head"));            tailOffset = unsafe.objectFieldOffset                (AbstractQueuedSynchronizer.class.getDeclaredField("tail"));            waitStatusOffset = unsafe.objectFieldOffset                (Node.class.getDeclaredField("waitStatus"));            nextOffset = unsafe.objectFieldOffset                (Node.class.getDeclaredField("next"));        } catch (Exception ex) { throw new Error(ex); }    }

stateOffset 是AbstractQueuedSynchronizer内部定义的一个状态量,AbstractQueuedSynchronizer是线程的竞态条件,所以只要某一个线程CAS改变状态成功,同时在没有释放的情况下,其他线程必然失败(对于Unsafe类还不是很熟悉,后面还需要系统的学习)。

对于竞争成功的线程会调用 setExclusiveOwnerThread方法:

/**     * The current owner of exclusive mode synchronization.     */    private transient Thread exclusiveOwnerThread;    /**     * Sets the thread that currently owns exclusive access. A     * null argument indicates that no thread owns access.     * This method does not otherwise impose any synchronization or     * volatile field accesses.     */    protected final void setExclusiveOwnerThread(Thread t) {        exclusiveOwnerThread = t;    }

这个实现是比较简单的,只是获取当前线程的引用,令AbstractOwnableSynchronizer中的exclusiveOwnerThread引用到当前线程。竞争失败的线程,会调用acquire方法,这个方法也是ReentrantLock设计的精华之处:

/**     * Acquires in exclusive mode, ignoring interrupts.  Implemented     * by invoking at least once {@link #tryAcquire},     * returning on success.  Otherwise the thread is queued, possibly     * repeatedly blocking and unblocking, invoking {@link     * #tryAcquire} until success.  This method can be used     * to implement method {@link Lock#lock}.     *     * @param arg the acquire argument.  This value is conveyed to     *        {@link #tryAcquire} but is otherwise uninterpreted and     *        can represent anything you like.     * tips:此处主要是处理没有获取到锁的线程     *   tryAcquire:重新进行一次锁获取和进行锁重入的处理。     *      addWaiter:将线程添加到等待队列中。     *   acquireQueued:自旋获取锁。           *      selfInterrupt:中断线程。     *      三个条件的关系为and,如果 acquireQueued返回true,那么线程被中断selfInterrupt会中断线程     */    public final void acquire(int arg) {        if (!tryAcquire(arg) &&            acquireQueued(addWaiter(Node.EXCLUSIVE), arg))            selfInterrupt();    }

AbstractQueuedSynchronizer为抽象方法,调用tryAcquire时,调用的为NonfairSync的tryAcquire。

protected final boolean tryAcquire(int acquires) {            return nonfairTryAcquire(acquires);        }
/**         * Performs non-fair tryLock.  tryAcquire is         * implemented in subclasses, but both need nonfair         * try for trylock method.         */        final boolean nonfairTryAcquire(int acquires) {            final Thread current = Thread.currentThread();            int c = getState();            if (c == 0) {                if (compareAndSetState(0, acquires)) {                    setExclusiveOwnerThread(current);                    return true;                }            }            else if (current == getExclusiveOwnerThread()) {                int nextc = c + acquires;                if (nextc < 0) // overflow                    throw new Error("Maximum lock count exceeded");                setState(nextc);                return true;            }            return false;        }

nonfairTryAcquire方法主要是做重入锁的实现,synchronized本身支持锁的重入,而ReentrantLock则是通过此处实现。在锁状态为0时,重新尝试获取锁。如果已经被占用,那么做一次是否当前线程为占用锁的线程的判断,如果是一样的那么进行计数,当然在锁的relase过程中会进行递减,保证锁的正常释放。

如果没有重新获取到锁或者锁的占用线程和当前线程是一个线程,方法返回false。那么把线程添加到等待队列中,调用addWaiter:

/**     * Creates and enqueues node for current thread and given mode.     *     * @param mode Node.EXCLUSIVE for exclusive, Node.SHARED for shared     * @return the new node     */    private Node addWaiter(Node mode) {        Node node = new Node(Thread.currentThread(), mode);        // Try the fast path of enq; backup to full enq on failure        Node pred = tail;        if (pred != null) {            node.prev = pred;            if (compareAndSetTail(pred, node)) {                pred.next = node;                return node;            }        }        enq(node);        return node;    }
/**     * Inserts node into queue, initializing if necessary. See picture above.     * @param node the node to insert     * @return node's predecessor     */    private Node enq(final Node node) {        for (;;) {            Node t = tail;            if (t == null) { // Must initialize                if (compareAndSetHead(new Node()))                    tail = head;            } else {                node.prev = t;                if (compareAndSetTail(t, node)) {                    t.next = node;                    return t;                }            }        }    }

这里主要是用当前线程构建一个Node的等待队列双向链表,这里addWaiter中和enq中的部分逻辑是重复的,个人感觉可能是如果能一次成功就避免了enq中的死循环。因为tail节点是volatile的同时node也是不会发生竞争的所以node.prev = pred;是安全的。但是tail的next是不断竞争的,所以利用compareAndSetTail保证操作的串行化。接下来调用acquireQueued方法:

/**     * Acquires in exclusive uninterruptible mode for thread already in     * queue. Used by condition wait methods as well as acquire.     *     * @param node the node     * @param arg the acquire argument     * @return {@code true} if interrupted while waiting     */    final boolean acquireQueued(final Node node, int arg) {        boolean failed = true;        try {            boolean interrupted = false;            for (;;) {                final Node p = node.predecessor();                if (p == head && tryAcquire(arg)) {                    setHead(node);                    p.next = null; // help GC                    failed = false;                    return interrupted;                }                if (shouldParkAfterFailedAcquire(p, node) &&                    parkAndCheckInterrupt())                    interrupted = true;            }        } finally {            if (failed)                cancelAcquire(node);        }    }

此处是做Node节点线程的自旋过程,自旋过程主要检查当前节点是不是head节点的next节点,如果是,则尝试获取锁,如果获取成功,那么释放当前节点,同时返回。至此一个非公平锁的锁获取过程结束。

如果这里一直不断的循环检查,其实是很耗费性能的,JDK的实现肯定不会这么“弱智”,所以有了shouldParkAfterFailedAcquire和parkAndCheckInterrupt,这两个方法就实现了线程的等待从而避免无限的轮询:

/**     * Checks and updates status for a node that failed to acquire.     * Returns true if thread should block. This is the main signal     * control in all acquire loops.  Requires that pred == node.prev     *     * @param pred node's predecessor holding status     * @param node the node     * @return {@code true} if thread should block     */    private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {        int ws = pred.waitStatus;        if (ws == Node.SIGNAL)            /*             * This node has already set status asking a release             * to signal it, so it can safely park.             */            return true;        if (ws > 0) {            /*             * Predecessor was cancelled. Skip over predecessors and             * indicate retry.             */            do {                node.prev = pred = pred.prev;            } while (pred.waitStatus > 0);            pred.next = node;        } else {            /*             * waitStatus must be 0 or PROPAGATE.  Indicate that we             * need a signal, but don't park yet.  Caller will need to             * retry to make sure it cannot acquire before parking.             */            compareAndSetWaitStatus(pred, ws, Node.SIGNAL);        }        return false;    }

首先,检查一下当前Node的前置节点pred是否是SIGNAL,如果是SIGNAL,那么证明前置Node的线程已经Park了,如果waitStatus>0,那么当前节点已经Concel或者中断。那么不断调整当前节点的前置节点,将已经Concel的和已经中断的线程移除队列。如果waitStatus<0,那么设置waitStatus为SIGNAL,因为调用shouldParkAfterFailedAcquire的方法为死循环调用,所以终将返回true。接下来看parkAndCheckInterrupt方法,当shouldParkAfterFailedAcquire返回True的时候执行parkAndCheckInterrupt方法:

private final boolean parkAndCheckInterrupt() {        LockSupport.park(this);        return Thread.interrupted();    }

此方法比较简单,其实就是使当前的线程park,即暂停了线程的轮询。当Unlock时会做后续节点的Unpark唤醒线程继续争抢锁。

接下来看一下锁的释放过程,锁释放主要是通过unlock方法实现:

/**     * Attempts to release this lock.     *     * 

If the current thread is the holder of this lock then the hold * count is decremented. If the hold count is now zero then the lock * is released. If the current thread is not the holder of this * lock then {@link IllegalMonitorStateException} is thrown. * * @throws IllegalMonitorStateException if the current thread does not * hold this lock */ public void unlock() { sync.release(1); }

主要是调用AbstractQueuedSynchronizer同步器的release方法:

/**     * Releases in exclusive mode.  Implemented by unblocking one or     * more threads if {@link #tryRelease} returns true.     * This method can be used to implement method {@link Lock#unlock}.     *     * @param arg the release argument.  This value is conveyed to     *        {@link #tryRelease} but is otherwise uninterpreted and     *        can represent anything you like.     * @return the value returned from {@link #tryRelease}     */    public final boolean release(int arg) {        if (tryRelease(arg)) {            Node h = head;            if (h != null && h.waitStatus != 0)                unparkSuccessor(h);            return true;        }        return false;    }

tryRelease方法为ReentrantLock中的Sync的tryRelease方法:

protected final boolean tryRelease(int releases) {            int c = getState() - releases;            if (Thread.currentThread() != getExclusiveOwnerThread())                throw new IllegalMonitorStateException();            boolean free = false;            if (c == 0) {                free = true;                setExclusiveOwnerThread(null);            }            setState(c);            return free;        }

tryRelease方法主要是做了一个释放锁的过程,将同步状态state -1,直到减到0为止,这主要是兼容重入锁设计的,同时setExclusiveOwnerThread(null)清除当前占用的线程。这些head节点后的线程和新进的线程就可以开始争抢。这里需要注意的是对于同步队列中的线程来说在setState(c),且c为0的时候,同步队列中的线程是没有竞争锁的,因为线程被park了还没有唤醒。但是此时对于新进入的线程是有机会获取到锁的。

下面代码是进行线程的唤醒:

Node h = head;            if (h != null && h.waitStatus != 0)                unparkSuccessor(h);            return true;

因为在setState(c)释放了锁之后,是没有线程竞争的,所以head是当前的head节点,先检查当前的Node是否合法,如果合法则unpark it。开始锁的获取。就回到了上面的for循环执行获取锁逻辑:

Paste_Image.png

至此锁的释放就结束了,可以看到ReentrantLock是一个不断的循环的状态模型,里面有很多东西值得我们学习和思考。

ReentrantLock具有公平和非公平两种模式,也各有优缺点:

公平锁是严格的以FIFO的方式进行锁的竞争,但是非公平锁是无序的锁竞争,刚释放锁的线程很大程度上能比较快的获取到锁,队列中的线程只能等待,所以非公平锁可能会有“饥饿”的问题。但是重复的锁获取能减小线程之间的切换,而公平锁则是严格的线程切换,这样对操作系统的影响是比较大的,所以非公平锁的吞吐量是大于公平锁的,这也是为什么JDK将非公平锁作为默认的实现。

最后:

关于并发和Lock还有很多的点还是比较模糊,我也会继续学习,继续总结,如果文章中有什么问题,还请各位看客及时指出,共同学习。

from:  

转载地址:http://yxwrf.baihongyu.com/

你可能感兴趣的文章
jvm调优-从eclipse开始
查看>>
构建微服务:Spring boot 入门篇
查看>>
jvm调优-命令大全(jps jstat jmap jhat jstack jinfo)
查看>>
Spring boot Myibatis
查看>>
spring boot(七):springboot+mybatis多数据源最简解决方案
查看>>
Spring Boot 笔记
查看>>
maven下手动导入ojdbc6.jar
查看>>
SpringBoot、MyBatis配置多数据源XML方法
查看>>
SpringBoot配置属性之MQ
查看>>
SpringBoot集成mybatis
查看>>
Shell文本处理三剑客之grep
查看>>
linux查看进程启动时间
查看>>
Linux 基础命令
查看>>
35 个 Java 代码性能优化总结
查看>>
Linux Sed 命令
查看>>
StandardContext 错误
查看>>
如何添加网站favicon.ico图标
查看>>
cvs no such repository 问题
查看>>
MySQL中REGEXP正则表达式
查看>>
服务端UDP双向通信学习资料
查看>>